The Evolution of the Welfare State

Diego Huerta
Northwestern University

January 9, 2024

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Source: OECD (2023).

Social benefits evolve differently across the world

- Social benefits, share of GDP (e.g. health, family, unemployment).

Source: OECD (2023). Net soc. ben.

What explains the evolution of the Welfare State?

- Many possible factors country-specific shocks, government changes, demographics, convergence ...

What explains the evolution of the Welfare State?

- This Paper

What explains the evolution of the Welfare State?

- This Paper

What explains the evolution of the Welfare State?

- This Paper

1. Inequality-Policy Link

What explains the evolution of the Welfare State?

- This Paper

1. Inequality-Policy Link
2. Anticipatory Voting

What explains the evolution of the Welfare State?

- This Paper

1. Inequality-Policy Link
2. Anticipatory Voting

- The Inequality-Policy Link predicts a large fraction of countries

Main Theoretical Results

1. Size of Welfare State depends on Middle class of Aspirational voters

Main Theoretical Results

1. Size of Welfare State depends on Middle class of Aspirational voters
2. Evolution of Welfare State depends on Wealth \& Inequality

Main Theoretical Results

1. Size of Welfare State depends on Middle class of Aspirational voters
2. Evolution of Welfare State depends on Wealth \& Inequality

Wealthy but \uparrow inequality: social benefits increase over time (e.g. US).

Main Theoretical Results

1. Size of Welfare State depends on Middle class of Aspirational voters
2. Evolution of Welfare State depends on Wealth \& Inequality

Wealthy but \uparrow inequality: social benefits increase over time (e.g. US).

Wealthy but \downarrow inequality: social benefits decrease over time (e.g. Sweden).

Quantitative Result

- Theory PREDICTS trends of social benefits in 18 out 24 countries

1. Calibration based on observed wealth distribution in 1995
2. Simulation of next 25 years given the 1995 's distribution

Contributions to the Literature

1. Theory that explains the differences in the evolution of the Welfare State Alesina and Rodrik (1994); Alesina and Angeletos (2005); Hassler et al. (2003)
2. Tractable model with heterogeneous agents, occupational choice, and politics
Krusell et al. (1996); Krusell and Rios-Rull (1996, 1999); Nuño and Moll (2018); Itskhoki and Moll (2019)

- Theoretical results for transition dynamics

Plan

1. The Model
2. Equilibrium Social Benefits
3. The Evolution of the Welfare State
4. Quantitative Exercise
5. Conclusions

The Model

The Model

- Continuum of agents heterogeneous in wealth $a_{t} \sim \Gamma_{t}(a)$

$$
\begin{array}{ll}
\max _{\left\{c_{t}\right\}_{t=0}^{+\infty}}\left\{\int_{0}^{\infty} e^{-\rho t} \log \left(c_{t}\right) d t\right\} \\
\text { s.t. } & \dot{a}_{t}=\left(r-\tau_{t}\right) a_{t}-c_{t}+ \begin{cases}w_{t} \ell+T_{t} & \text { if worker } \\
\Pi_{t} & \text { if entrepreneur }\end{cases} \\
& a_{t} \geq \underline{a}
\end{array}
$$

The Model

- Continuum of agents heterogeneous in wealth $a_{t} \sim \Gamma_{t}(a)$

$$
\begin{array}{ll}
\max _{\left\{c_{t}\right\}_{t=0}^{+\infty}}\left\{\int_{0}^{\infty} e^{-\rho t} \log \left(c_{t}\right) d t\right\} \\
\text { s.t. } & \dot{a}_{t}=\left(r-\tau_{t}\right) a_{t}-c_{t}+ \begin{cases}w_{t} \ell+T_{t} & \text { if worker } \\
\Pi_{t} & \text { if entrepreneur }\end{cases} \\
& a_{t} \geq \underline{a}
\end{array}
$$

- Transfers to workers: $T_{t}=\boldsymbol{b}_{\boldsymbol{t}} \cdot Y_{t}$
- Transfer rate: $b_{t} \geq-\underline{b}$ (social benefits, $\%$ of GDP)

The Model

- Continuum of agents heterogeneous in wealth $a_{t} \sim \Gamma_{t}(a)$

$$
\begin{array}{ll}
\max _{\left\{c_{t}\right\}_{t=0}^{+\infty}}\left\{\int_{0}^{\infty} e^{-\rho t} \log \left(c_{t}\right) d t\right\} \\
\text { s.t. } & \dot{a}_{t}=\left(r-\tau_{t}\right) a_{t}-c_{t}+ \begin{cases}w_{t} \ell+T_{t} & \text { if worker } \\
\Pi_{t} & \text { if entrepreneur }\end{cases} \\
& a_{t} \geq \underline{a}
\end{array}
$$

- Transfers to workers: $T_{t}=\boldsymbol{b}_{\boldsymbol{t}} \cdot Y_{t}$
- Transfer rate: $b_{t} \geq-\underline{b}$ (social benefits, $\%$ of GDP)
- Balanced budget: $\tau_{t} \cdot A_{t}=T_{t} \cdot\left(1-e_{t}\right)\left(\boldsymbol{e}_{\boldsymbol{t}}: \%\right.$ of entrepreneurs $)$

The Model

- Continuum of agents heterogeneous in wealth $a_{t} \sim \Gamma_{t}(a)$

$$
\begin{array}{ll}
\max _{\left\{c_{t}\right\}_{t=0}^{+\infty}}\left\{\int_{0}^{\infty} e^{-\rho t} \log \left(c_{t}\right) d t\right\} \\
\text { s.t. } & \dot{a}_{t}=\left(r-\tau_{t}\right) a_{t}-c_{t}+ \begin{cases}w_{t} \ell+T_{t} & \text { if worker } \\
\Pi_{t} & \text { if entrepreneur } \\
& a_{t} \geq \underline{a}\end{cases}
\end{array}
$$

- Transfers to workers: $T_{t}=\boldsymbol{b}_{\boldsymbol{t}} \cdot Y_{t}$
- Transfer rate: $b_{t} \geq-\underline{b}$ (social benefits, $\%$ of GDP)
- Balanced budget: $\tau_{t} \cdot A_{t}=T_{t} \cdot\left(1-e_{t}\right)\left(\boldsymbol{e}_{\boldsymbol{t}}: \%\right.$ of entrepreneurs $)$

Two Technologies

1. Entrepreneurs produce physical capital (K):

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :

$$
Y_{t}=Z K_{t}^{\alpha} L_{t}^{1-\alpha}, K_{t}=R \cdot e_{t} \text { and } L_{t}=\ell \cdot\left(1-e_{t}\right)
$$

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :

$$
Y_{t}=Z K_{t}^{\alpha} L_{t}^{1-\alpha}, K_{t}=R \cdot e_{t} \text { and } L_{t}=\ell \cdot\left(1-e_{t}\right)
$$

- Price of capital: $p_{t}=M P K_{t}$

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :
$Y_{t}=Z K_{t}^{\alpha} L_{t}^{1-\alpha}, K_{t}=R \cdot e_{t}$ and $L_{t}=\ell \cdot\left(1-e_{t}\right)$

- Price of capital: $p_{t}=M P K_{t}$
- Wage rate: $w_{t}=M P L_{t}$

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :
$Y_{t}=Z K_{t}^{\alpha} L_{t}^{1-\alpha}, K_{t}=R \cdot e_{t}$ and $L_{t}=\ell \cdot\left(1-e_{t}\right)$

- Price of capital: $p_{t}=M P K_{t}$
- Wage rate: $w_{t}=M P L_{t}$
- Productivity: Z

Two Technologies

1. Entrepreneurs produce physical capital (K):

Investment $(I>0)+\operatorname{Labor}(\ell)=R$ units of K
2. Representative firm produces output-good (Y) :
$Y_{t}=Z K_{t}^{\alpha} L_{t}^{1-\alpha}, K_{t}=R \cdot e_{t}$ and $L_{t}=\ell \cdot\left(1-e_{t}\right)$

- Price of capital: $p_{t}=M P K_{t}$
- Wage rate: $w_{t}=M P L_{t}$
- Productivity: Z

Individual profits: $\Pi_{t}=p_{t} R-r l$

Timing of individual decisions

$$
\left(a_{t}, \Gamma_{t}\right) \quad \text { Voting }
$$

Timing of individual decisions

Timing of individual decisions

Timing of individual decisions

- Agents expect social benefits to remain stable (do not predict $\left\{b_{s}, \Gamma_{s}\right\}_{s=t}^{+\infty}$) Benabou and Ok (2001); Alesina and La Ferrara (2005)

Timing of individual decisions

- Agents expect social benefits to remain stable (do not predict $\left\{b_{s}, \Gamma_{s}\right\}_{s=t}^{+\infty}$) Benabou and Ok (2001); Alesina and La Ferrara (2005)
- Alternative: fully-rational equilibrium (numerical) Krusell and Rios-Rull (1996, 1999); Quadrini and Rios-Rull (2023)

Occupational Choice

Occupational Choice

- Occupational constraint: $\Pi_{t} \geq w_{t} \ell+T_{t}$

Occupational Choice

- Occupational threshold: $\tilde{a}\left(b_{t}, \Gamma_{t}\right)$

Occupational Choice

- Occupational threshold: $\tilde{a}\left(b_{t}, \Gamma_{t}\right)$
- Credit constraints à la Holmstrom and Tirole (1997):

$$
\Pi_{t}+r a \geq(I-a)+w_{t} \ell+T_{t}
$$

Occupational Choice

- Occupational threshold: $\tilde{a}\left(b_{t}, \Gamma_{t}\right)$
- Minimum collateral to get credit: $\hat{a}\left(b_{t}, \Gamma_{t}\right)$

Occupational Choice

- Occupational threshold: $\tilde{a}\left(b_{t}, \Gamma_{t}\right)$
- Minimum collateral to get credit: $\hat{a}\left(b_{t}, \Gamma_{t}\right)$
- Occupational choice: $a_{t}^{o}\left(b_{t}, \Gamma_{t}\right)=\max \left\{\hat{a}_{t}, \tilde{a}_{t}\right\} \quad(O C)$

Occupational Choice

Result

1. Occupational threshold $a_{t}^{o}\left(b, \Gamma_{t}\right)$ is increasing in b

Occupational Choice

Result

1. Occupational threshold $a_{t}^{\circ}\left(b, \Gamma_{t}\right)$ is increasing in b
\uparrow Social benefits $\Rightarrow \downarrow$ Entrepreneurs
Audretsch et al. (2022); Solomon et al. (2022, 2021); Henrekson (2005)

Occupational Choice

Result

1. Occupational threshold $a_{t}^{o}\left(b, \Gamma_{t}\right)$ is increasing in b
\uparrow Social benefits $\Rightarrow \downarrow$ Entrepreneurs
Audretsch et al. (2022); Solomon et al. (2022, 2021); Henrekson (2005)
2. Maximum Sustainable transfer rate: $\bar{b}\left(\Gamma_{t}\right)$

Plan

1. The Model

2. Equilibrium Social Benefits
3. The Evolution of the Welfare State
4. Quantitative Exercise
5. Conclusions

Equilibrium Social Benefits: Roadmap

1. Individual Preferences
2. Probabilistic Voting (Persson and Tabellini, 2000)
3. Equilibrium Social Benefits

Individual Preferences

Individual preferred transfer rate: $b\left(a ; \Gamma_{t}\right)$

- Agents observe a and Γ_{t}, and maximize disposable income at t :

$$
b\left(a ; \Gamma_{t}\right)=\operatorname{argmax}_{b \in[b, b]} y_{t}\left(a, b ; \Gamma_{t}\right)= \begin{cases}y_{t}^{W} & \text { if } a<a^{\circ}\left(b, \Gamma_{t}\right) \\ y_{t}^{E} & \text { if } a \geq a^{\circ}\left(b, \Gamma_{t}\right)\end{cases}
$$

Individual preferred transfer rate: $b\left(a ; \Gamma_{t}\right)$

- Agents observe a and Γ_{t}, and maximize disposable income at t :

$$
b\left(a ; \Gamma_{t}\right)=\operatorname{argmax}_{b \in[\underline{b}, \bar{b}]} y_{t}\left(a, b ; \Gamma_{t}\right)= \begin{cases}y_{t}^{W} & \text { if } a<a^{o}\left(b, \Gamma_{t}\right) \\ y_{t}^{E} & \text { if } a \geq a^{o}\left(b, \Gamma_{t}\right)\end{cases}
$$

- Agents anticipate occupational mobility prospects at t

Individual preferred transfer rate

Individual preferred transfer rate

Individual preferred transfer rate

- Working Class: high social benefits

Individual preferred transfer rate

- Emerging Class: either Workers or Entrepreneurs

Individual preferred transfer rate

- Emerging Class: either Workers or Entrepreneurs

Individual preferred transfer rate

- Emerging Class: pro-business policy

Individual preferred transfer rate

- Emerging Class: pro-business policy

Individual preferred transfer rate

- Incumbent Class: less pro-business policy

Probabilistic Voting

Electoral competition under uncertainty

- Two parties choose b_{t}^{1} and b_{t}^{2} to maximize expected share of votes

Electoral competition under uncertainty

- Two parties choose b_{t}^{1} and b_{t}^{2} to maximize expected share of votes
- Voters indexed by (a, p)

Electoral competition under uncertainty

- Two parties choose b_{t}^{1} and b_{t}^{2} to maximize expected share of votes
- Voters indexed by (a, p)
p : idiosyncratic political preference (Uniform, $\left(\phi^{W}, \phi^{E}\right)$)

Electoral competition under uncertainty

- Two parties choose b_{t}^{1} and b_{t}^{2} to maximize expected share of votes
- Voters indexed by (a, p)
p : idiosyncratic political preference (Uniform, $\left(\phi^{W}, \phi^{E}\right)$)
- Symmetric Nash equilibrium:

$$
b_{t}=\operatorname{argmax}_{b}\{\int_{a<a_{t}^{o}(b)} y(a, b) d \Gamma_{t}(a)+\underbrace{\frac{\phi^{E}}{\phi^{W}}}_{\equiv \phi} \int_{a \geq a_{t}^{o}(b)} y(a, b) d \Gamma_{t}(a)\}
$$

Equilibrium Social Benefits

Equilibrium Social Benefits

- Maximize weighted income ($\phi \geq 1$ Political weight):

$$
\max _{b}\left\{w_{t} \ell \cdot\left(1-e_{t}\right)+\phi \Pi_{t} \cdot e_{t}\right\}
$$

Equilibrium Social Benefits

- Maximize weighted income ($\phi \geq 1$ Political weight):

$$
\max _{b}\left\{w_{t} \ell \cdot\left(1-e_{t}\right)+\phi \Pi_{t} \cdot e_{t}\right\}
$$

- Equilibrium policy b_{t} :

$$
1-\Gamma_{t}\left(a^{o}\left(b_{t}, \Gamma_{t}\right)\right)=e^{*} \quad(P E)
$$

- $e^{*}=\Psi(Z, r, \alpha, R, I, \ell, \phi) \in(0, \alpha)$

[^0]
Plan

1. The Model

2. Equilibrium Social Benefits
3. The Evolution of the Welfare State
4. Quantitative Exercise
5. Conclusions

Equilibrium Definition

Equilibrium Definition

$$
\begin{gathered}
s_{t}(a)=\theta_{t} \cdot y_{t}(a) \\
d_{t} \Gamma_{t}(a)=H\left(\Gamma_{t}, s_{t}, a_{t}^{o}\right)
\end{gathered}
$$

(HJB)
(KFE)

Equilibrium Definition

$$
\begin{aligned}
s_{t}(a) & =\theta_{t} \cdot y_{t}(a) \\
d_{t} \Gamma_{t}(a) & =H\left(\Gamma_{t}, s_{t}, a_{t}^{o}\right) \\
a_{t}^{o} & =\max \left\{\hat{a}_{t}, \tilde{a}_{t}\right\} \\
e^{*} & =1-\Gamma_{t}\left(a_{t}^{o}\right) \\
\tau_{t} \cdot A_{t} & =T_{t} \cdot\left(1-e^{*}\right)
\end{aligned}
$$

(HJB)
(PE)
($B B$)

Stationary Equilibrium

Stationary Equilibrium

1. Unique stationary tax rate: $\boldsymbol{\tau}^{*}=\boldsymbol{r}-\boldsymbol{\rho}\left(\theta\left(\tau^{*}\right)=0\right)$
2. Set of stationary distributions: 「*

SS details

Transition Dynamics

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Given Γ_{0} and $r-\rho$:

1. Γ converges to one Γ^{*}

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Given Γ_{0} and $r-\rho$:

1. Γ converges to one Γ^{*}
2. Γ diverges

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Given Γ_{0} and $r-\rho$:

1. Γ converges to one Γ^{*}
2. 「 diverges
3. 「 converges to a degenerate distribution

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Main takeaway

1. If $\tau\left(\Gamma_{0}\right)<r-\rho \Rightarrow b$ increasing over time
2. If $\tau\left(\Gamma_{0}\right)>r-\rho \Rightarrow b$ decreasing over time

Transition Dynamics

- Six possible patterns for the joint dynamics of $\left(b_{t}, \tau_{t}, A_{t}\right)$ details

Main takeaway

1. If $\tau\left(\Gamma_{0}\right)<r-\rho \Rightarrow b$ increasing over time
2. If $\tau\left(\Gamma_{0}\right)>r-\rho \Rightarrow b$ decreasing over time

Question Which properties of Γ_{0} give rise to each case?

Question Which properties of Γ_{0} imply that $\uparrow b$ or $\downarrow b$?

- Problem Characterizing distributions is analytically cumbersome

Question Which properties of Γ_{0} imply that $\uparrow b$ or $\downarrow b$?

- Problem Characterizing distributions is analytically cumbersome
- Solution Construct Γ_{0} perturbing stationary distributions Γ^{*}

Question Which properties of Γ_{0} imply that $\uparrow b$ or $\downarrow b$?

- Problem Characterizing distributions is analytically cumbersome
- Solution Construct Γ_{0} perturbing stationary distributions Γ^{*}

Apply an MPS on Γ^{*} to obtain Γ_{0} (MIT shock) MPS around the mean (Rothschild and Stiglitz, 1971)

The MPS approach

The MPS approach

The MPS approach

The MPS approach

The MPS approach

The Evolution of the Welfare State: Wealthy Countries

\uparrow Inequality: USA (1970-2019)
Increasing social benefits

The Evolution of the Welfare State: Wealthy Countries

\uparrow Inequality: USA (1970-2019)
Increasing social benefits
\downarrow Inequality: Sweden (1995-2019)
Decreasing social benefits

The American Experience (1970-2019)

American Experience: Intuition

American Experience: Intuition

American Experience: Intuition

- $t=0$: Wealthy and Unequal \Rightarrow Many Aspirational Voters (AV)

American Experience: Intuition

- $t=0$: Wealthy and Unequal \Rightarrow Many Aspirational Voters (AV) \Rightarrow Low b

American Experience: Intuition

- $t=0$: Low $b \Rightarrow$ Low $\tau \Rightarrow$ Agents save

American Experience: Intuition

- $t=0$: Low $b \Rightarrow$ Low $\tau \Rightarrow$ Agents save $\Rightarrow \Gamma$ shifts right

American Experience: Intuition

- $t=\Delta: \Gamma$ shifts right \Rightarrow Everyone wealthier

American Experience: Intuition

- $t=\Delta: \Gamma$ shifts right \Rightarrow Everyone wealthier $\Rightarrow \uparrow a^{\circ}$

American Experience: Intuition

- $t=\Delta$: Poorest AV didn't save enough

American Experience: Intuition

- $t=\Delta$: Poorest AV didn't save enough \Rightarrow join the Working Class

American Experience: Intuition

- $t=\Delta:$ Wealthiest $A V$ saved enough

American Experience: Intuition

- $t=\Delta:$ Wealthiest $A V$ saved enough \Rightarrow join the Incumbent Class

American Experience: Intuition

- $t=\Delta$: Mass of AV shrinks $\Rightarrow b$ goes up

American Experience: Intuition

1. $t=0$: Wealthy and unequal

Many $\mathrm{AV} \Rightarrow$ Low social benefits

American Experience: Intuition

1. $t=0$: Wealthy and unequal

Many $A V \Rightarrow$ Low social benefits
2. $t=1,2, .$. Poorest AV join the Working Class Wealthiest AV join the Incumbent Class

American Experience: Intuition

1. $t=0$: Wealthy and unequal

Many $\mathrm{AV} \Rightarrow$ Low social benefits
2. $t=1,2, .$. Poorest AV join the Working Class Wealthiest AV join the Incumbent Class

Mass of AV shrinks over time \Rightarrow Increasing path of social benefits

American Experience: Intuition

1. $t=0$: Wealthy and unequal

Many $A V \Rightarrow$ Low social benefits
2. $t=1,2,$. Poorest AV join the Working Class Wealthiest AV join the Incumbent Class

Mass of AV shrinks over time \Rightarrow Increasing path of social benefits
Question Can the model predict the trends in the data?

Plan

\author{

1. The Model
 2. Equilibrium Social Benefits
 3. The Evolution of the Welfare State
}
2. Quantitative Exercise
3. Conclusions

Quantitative Exercise

Quantitative Exercise (1995-2019)

Inputs

1. Starting wealth distribution: Γ_{1995}

World Inequality Database (WID)

Quantitative Exercise (1995-2019)

Inputs

1. Starting wealth distribution: Γ_{1995}

World Inequality Database (WID)
2. Production function and productivity: $\alpha,\left\{Z_{t}\right\}_{t=1995}^{2019}$

Quantitative Exercise (1995-2019)

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)
2. Production function and productivity: $\alpha,\left\{Z_{t}\right\}_{t=1995}^{2019}$
2.1 Solow Residual (24 countries) Penn World Table

Quantitative Exercise (1995-2019)

Inputs

1. Starting wealth distribution: Γ_{1995} World Inequality Database (WID)
2. Production function and productivity: $\alpha,\left\{Z_{t}\right\}_{t=1995}^{2019}$
2.1 Solow Residual (24 countries) Penn World Table
2.2 Olley and Pakes (1996): control for selection/simultaneity (17 countries) COMPUSTAT North America and COMPUSTAT Global

Quantitative Exercise (1995-2019)

Result: the model predicts the trend of $\mathbf{1 8}$ out of $\mathbf{2 4}$ countries

Countries in the Intro: Data versus Model

Countries in the Intro: Data versus Model

Black: Data

Countries in the Intro: Data versus Model

The Role of Productivity

United States: Social benefits and Productivity

United States: Social benefits and Productivity

United States: Social benefits and Productivity

United States: Social benefits and Productivity

United States: Social benefits and Productivity

United States: Social benefits and Productivity

- Effects of increasing productivity?

United States: Social benefits and Productivity

- 1st order effect: $\uparrow Z \Rightarrow \uparrow \Pi$ and $\downarrow a^{o}$

United States: Social benefits and Productivity

- 1st order effect: $\uparrow Z \Rightarrow \uparrow \Pi$ and $\downarrow a^{\circ} \Rightarrow \uparrow$ AV $\Rightarrow \downarrow b$

United States: Social benefits and Productivity

- Why social benefits going up despite increasing productivity?

United States: Social benefits and Productivity

- 2nd order effect: $\downarrow b \Rightarrow \downarrow \tau \Rightarrow$ Agents save

United States: Social benefits and Productivity

- 2nd order effect: $\downarrow b \Rightarrow \downarrow \tau \Rightarrow$ Agents save $\Rightarrow \downarrow$ mass of $\mathrm{AV} \Rightarrow \uparrow b$

United States: Social benefits and Productivity

- 2nd order effect has dominated in the US!

Extensions

Extensions

Theory

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Quantitative Exercise

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Quantitative Exercise

1. Simulations using only social benefits in cash $\sqrt{ }$

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Quantitative Exercise

1. Simulations using only social benefits in cash $\sqrt{ }$
2. Counterfactual Analysis (Canada, USA, Sweden) $\sqrt{ }$

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Quantitative Exercise

1. Simulations using only social benefits in cash $\sqrt{ }$
2. Counteffactual Analysis (Canada, USA, Sweden) $\sqrt{ }$

- Limited role of government changes in the trend of the Welfare State!

Extensions

Theory

1. Labor and capital tax $\sqrt{ }$
2. Transfers to entrepreneurs and workers $\sqrt{ }$

Quantitative Exercise

1. Simulations using only social benefits in cash $\sqrt{ }$
2. Countefactual Anlysis (Canada, USA, Sweden) $\sqrt{ }$

- Limited role of government changes in the trend of the Welfare State!

3. Future work: Role of immigration (e.g. Canada and Sweden), aging population, ...

Conclusions

- Size of the Welfare State depends on Middle class of Aspirational voters
- Evolution of the Welfare State depends on Wealth \& Inequality
- Theory predicts the trends of social benefits in 18 out 24 countries

Thanks!!!

References I

Alesina, Alberto and Dani Rodrik, "Distributive Politics and Economic Growth," The Quarterly Journal of Economics, 1994, 109 (2), 465-490.
_ and Eliana La Ferrara, "Preferences for Redistribution in the Land of Opportunities," Journal of Public Economics, 2005, 89 (5-6), 897-931.
_ and George-Marios Angeletos, "Fairness and Redistribution," American Economic Review, 2005, 95 (4), 960-980.
Audretsch, David B, Maksim Belitski, Farzana Chowdhury, and Sameeksha Desai, "Necessity or Opportunity? Government Size, Tax Policy, Corruption, and Implications for Entrepreneurship," Small Business Economics, 2022, 58 (4), 2025-2042.
Benabou, Roland and Efe A Ok, "Social Mobility and the Demand for Redistribution: the POUM Hypothesis," The Quarterly Journal of Economics, 2001, 116 (2), 447-487.
Checchi, Daniele and Antonio Filippin, "An Experimental Study of the POUM Hypothesis," in "Inequality, Welfare and Income Distribution: Experimental Approaches," Emerald Group Publishing Limited, 2004, pp. 115-136.
Hassler, John, José V Rodríguez Mora, Kjetil Storesletten, and Fabrizio Zilibotti, "The Survival of the Welfare State," American Economic Review, 2003, 93 (1), 87-112.
Henrekson, Magnus, "Entrepreneurship: a weak link in the welfare state?," Industrial and Corporate change, 2005, 14 (3), 437-467.
Holmstrom, Bengt and Jean Tirole, "Financial Intermediation, Loanable Funds, and the Real Sector," The Quarterly Journal of Economics, 1997, 112 (3), 663-691.

References II

Itskhoki, Oleg and Benjamin Moll, "Optimal Development Policies with Financial Frictions," Econometrica, 2019, 87 (1), 139-173.
Krusell, Per and Jose-Victor Rios-Rull, "Vested Interests in a Positive Theory of Stagnation and Growth," The Review of Economic Studies, 1996, 63 (2), 301-329.
_ and _ , "On the Size of US Government: Political Economy in the Neoclassical Growth Model," American Economic Review, 1999, 89 (5), 1156-1181.
— , Vincenzo Quadrini, and Jose-Victor Rios-Rull, "Are Consumption Taxes Really Better than Income Taxes?," Journal of Monetary Economics, 1996, 37 (3), 475-503.
Nuño, Galo and Benjamin Moll, "Social Optima in Economies with Heterogeneous Agents," Review of Economic Dynamics, 2018, 28, 150-180.
Olley, G. Steven and Ariel Pakes, "The Dynamics of Productivity in the Telecommunications Equipment Industry," Econometrica, 1996, 64 (6), 1263-1297.
Persson, Torsten and Guido Tabellini, Political Economics: Explaining Economic Policy, The MIT Press, 2000.
Porta, Rafael La, Florencio Lopez de Silanes, Andrei Shleifer, and Robert Vishny, "Investor Protection and Corporate Governance," Journal of Financial Economics, 2000, 58 (1-2), 3-27.
Quadrini, Vincenzo and JV Rios-Rull, "International Tax Competition with Rising Intangible Capital and Financial Globalization," Technical Report, mimeo 2023.
Rajan, Raghuram G and Luigi Zingales, "The Great Reversals: The Politics of Financial Development in the Twentieth Century," Journal of Financial Economics, 2003, 69 (1), 5-50.

References III

- and Rodney Ramcharan, "Land and Credit: A Study of the Political Economy of Banking in the United States in the Early 20th Century," The Journal of Finance, 2011, 66 (6), 1895-1931.
Rothschild, Michael and Joseph E Stiglitz, "Increasing Risk II: Its Economic Consequences," Journal of Economic Theory, 1971, 3 (1), 66-84.
Solomon, Shelby J, Joshua S Bendickson, Matt R Marvel, William C McDowell, and Raj Mahto, "Agency Theory and Entrepreneurship: A Cross-Country Analysis," Journal of Business Research, 2021, 122, 466-476.

Solomon, Shelby, Joshua S Bendickson, Eric W Liguori, and Matthew R Marvel, "The Effects of Social Spending on Entrepreneurship in Developed Nations," Small Business Economics, 2022, pp. 1-13.

Supplementary Material

The Evolution of Net Social Benefits

19952000200520102015

Social Benefits versus Business Policies

The Three Classes: Related Literature

- Emerging Class: Prospects of Upward Mobility Hypothesis Benabou and Ok (2001); Checchi and Filippin (2004); Alesina and La Ferrara (2005)

The Three Classes: Related Literature

- Emerging Class: Prospects of Upward Mobility Hypothesis Benabou and Ok (2001); Checchi and Filippin (2004); Alesina and La Ferrara (2005)
- Incumbent Class: Interest group theories of financial development La Porta et al. (2000); Rajan and Zingales (2003); Rajan and Ramcharan (2011)

The Three Classes: The Industrial Revolution in Britain

The Three Classes: The Industrial Revolution in Britain

The Three Classes: The Industrial Revolution in Britain

The Three Classes: The Industrial Revolution in Britain

Forward-looking government

- The government solves:

$$
\max _{b}\left\{\int v_{t}(a, b) d \Gamma_{t}(a)\right\}
$$

- The PE condition is:

$$
\int_{a<a^{o}\left(b, r_{t}\right)} \frac{\left(d_{b} w_{t} \ell+d_{b} T_{t}\right)}{y_{t}(a)} d r_{t}(a)+\int_{a \geq a^{o}\left(b, r_{t}\right)} \frac{d_{b} p_{t}}{y_{t}(a)} d r_{t}(a)=d_{b} \tau_{t} \int \frac{a}{y(a)} d r_{t}(a)+e^{\rho t}\left(\int_{t}^{+\infty}{ }_{d_{b} \tau_{s}} \frac{1}{r-\tau_{s}} e^{-\rho s} d s\right)+\frac{1}{\rho}
$$

- Observation The evolution of b depends on 「 evaluated at each a

The inequality \rightarrow policy link: $1-\Gamma_{t}\left(a^{o}\left(b_{t}, \Gamma_{t}\right)\right)=e^{*}$

The inequality \rightarrow policy link:

$$
a_{t}^{o}=\Gamma_{t}^{-1}\left(1-e^{*}\right)
$$

The inequality \rightarrow policy link:
$a_{t}^{o}=\Gamma_{t}^{-1}\left(1-e^{*}\right)$

The inequality \rightarrow policy link:
$a_{t}^{o}=\Gamma_{t}^{-1}\left(1-e^{*}\right)$

The inequality \rightarrow policy link: $\quad a_{t}^{o}=\Gamma_{t}^{-1}\left(1-e^{*}\right)$

The inequality \rightarrow policy link: $\quad a_{t}^{o}=\Gamma_{t}^{-1}\left(1-e^{*}\right)$

Main

Stationary Equilibrium

Steady-state: $d_{t} \Gamma_{t}(a)=0$

$$
\begin{aligned}
\tilde{H}\left(\Gamma^{*}, s=\theta^{*} \cdot y\right) & =0 \\
& \Rightarrow \theta^{*}=0 \\
& \Rightarrow \boldsymbol{\tau}^{*}=\boldsymbol{r}-\boldsymbol{\rho}
\end{aligned}
$$

- Result There is a unique stationary tax-rate: τ^{*}

Stationary Equilibrium

Steady-state distribution (Γ^{*})

$$
\begin{align*}
r-\rho & =\frac{b^{*} \Gamma^{*}\left(\hat{a}^{*}\right) \cdot y\left(\Gamma^{*}\right)}{A^{*}} \tag{BB}\\
a^{\circ} * & =\tilde{\psi}\left(\Gamma^{*}\right) \tag{OC}\\
b^{*} & =\tilde{\phi}\left(\Gamma^{*}\right) \tag{PE}
\end{align*}
$$

- Result Γ^{*} is non-unique: there is a set $\left(A^{*}, \Gamma^{*}\right)$ that solves the system.
- Similar result in the neoclassical model + politics.

Krusell and Rios-Rull $(1996,1999)$

Cases are function of $r-\rho$ and Γ_{0}

Case 1

Case 3

Cases are function of $r-\rho$ and Γ_{0}

Case 1

Case 2

Time (t)

Case 3

Case 4

Cases are function of $r-\rho$ and Γ_{0}

Case 1

Case 2

Case 3

Cases are function of $r-\rho$ and Γ_{0}
Case 1

Case 3

*

Cases are function of $r-\rho$ and Γ_{0}

Cases are function of $r-\rho$ and Γ_{0}

Case 3

Case 4

む゙

Cases are function of $r-\rho$ and Γ_{0}

Case 3

Case 4

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

- $\tau_{0}<\tau^{*}=r-\rho$
- $\theta_{0}>0 \Rightarrow$ agents save

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

- $\tau_{0}<\tau^{*}=r-\rho$
- $\theta_{0}>0 \Rightarrow \Gamma_{\Delta}$ FOSD $\Gamma_{0}(\Gamma$ shifts right $)$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

1. More entrepreneurs: $1-\Gamma_{\Delta}\left(a^{\circ}\left(b_{0}, \Gamma_{0}\right)\right)>e^{*}$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

1. More entrepreneurs: $1-\Gamma_{\Delta}\left(a^{\circ}\left(b_{0}, \Gamma_{0}\right)\right)>e^{*}$
2. More competition $(\downarrow \Pi): a^{\circ}\left(b_{0}, \Gamma_{\Delta}\right)>a^{\circ}\left(b_{0}, \Gamma_{0}\right)$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

1. More entrepreneurs: $1-\Gamma_{\Delta}\left(a^{\circ}\left(b_{0}, \Gamma_{\Delta}\right)\right)>e^{*}$ (net effect)
2. More competition $(\downarrow \Pi): a^{\circ}\left(b_{0}, \Gamma_{\Delta}\right)>a^{\circ}\left(b_{0}, \Gamma_{0}\right)$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

- Too many entrepreneurs: $1-\Gamma_{\Delta}\left(a^{\circ}\left(b_{0}, \Gamma_{\Delta}\right)\right)>e^{*}$
- Government: increases b to raise $a^{\circ} \Rightarrow \boldsymbol{b}_{\Delta}>\boldsymbol{b}_{\mathbf{0}}$

Transfer rate dynamics: Γ_{0} such that $\tau_{0}<r-\rho$

- b_{t} keeps increasing as long as $\theta_{t}>0$
- When $\theta_{t}=0 \Rightarrow b_{t}=b^{*}$ Main

MPS in a Wealthy Country

- Capital unconstrained country $\left(A^{*}>\hat{a}^{*}\right)$

MPS in a Wealthy Country

- γ_{0} more unequal than γ^{*} (double-crossing)

MPS in a Wealthy Country

- More unequal \Rightarrow Less entrepreneurs: $1-\Gamma_{0}\left(\hat{a}^{*}\right)<1-\Gamma^{*}\left(\hat{a}^{*}\right)$

MPS in a Wealthy Country

- Net effect: $1-\Gamma_{0}\left(\hat{a}_{0}\right)<1-\Gamma^{*}\left(\hat{a}^{*}\right) \Rightarrow \boldsymbol{b}_{0}<\boldsymbol{b}^{*} \Rightarrow \tau_{0}<r-\rho$

MPS in a Wealthy Country

- $\tau_{0}<r-\rho \Rightarrow b$ increasing over time

Calibration Method

- Set of parameters $\Psi=(r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$

Calibration Method

- Set of parameters $\Psi=(r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$
- ω : "government responsiveness" to ΔZ

Calibration Method

- Set of parameters $\Psi=(r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$
- ω : "government responsiveness" to ΔZ
- Set of moments:

$$
m\left(\Psi \mid \Gamma_{0}\right)=\left[\begin{array}{c}
\boldsymbol{b}_{0}-\boldsymbol{P}\left(\Gamma_{0}, \Psi\right) \\
K_{0} / L_{0}-K / L\left(\Gamma_{0}, \Psi\right) \\
I_{0} / Y_{0}-\operatorname{Inv}\left(\Gamma_{0}, \Psi\right) \\
\operatorname{Giniy}_{0}-\operatorname{Giniy}\left(\Gamma_{0}, \Psi\right) \\
b_{0}-P\left(\Gamma_{\Delta}, \Psi\right) \\
\mathbb{E}\left[a \mid \Gamma_{0}\right]-\mathbb{E}\left[a \mid \Gamma_{\Delta}\right] \\
\operatorname{Var}\left[a \mid \Gamma_{0}\right]-\operatorname{Var}\left[a \mid \Gamma_{\Delta}\right] \\
\operatorname{Gini}\left[a \mid \Gamma_{0}\right]-\operatorname{Gini}\left[a \mid \Gamma_{\Delta}\right]
\end{array}\right]_{8 \times 1}
$$

Calibration Method

- Set of parameters $\Psi=(r, \phi, I, R, \ell, \rho, \omega)_{1 \times 7}$
- ω : "government responsiveness" to ΔZ
- Set of moments:

$$
m\left(\Psi \mid \Gamma_{0}\right)=\left[\begin{array}{c}
\boldsymbol{b}_{0}-\boldsymbol{P}\left(\Gamma_{0}, \Psi\right) \\
K_{0} / L_{0}-K / L\left(\Gamma_{0}, \Psi\right) \\
I_{0} / Y_{0}-\operatorname{Inv}\left(\Gamma_{0}, \Psi\right) \\
\operatorname{Giniy}_{0}-\operatorname{Giniy}\left(\Gamma_{0}, \Psi\right) \\
b_{0}-P\left(\Gamma_{\Delta}, \Psi\right) \\
\mathbb{E}\left[a \mid \Gamma_{0}\right]-\mathbb{E}\left[a \mid \Gamma_{\Delta}\right] \\
\operatorname{Var}\left[a \mid \Gamma_{0}\right]-\operatorname{Var}\left[a \mid \Gamma_{\Delta}\right] \\
\operatorname{Gini}\left[a \mid \Gamma_{0}\right]-\operatorname{Gini}\left[a \mid \Gamma_{\Delta}\right]
\end{array}\right]_{8 \times 1}
$$

- Solve: $\hat{\Psi}=\operatorname{argmin}_{\Psi}\left\{m\left(\Psi \mid \Gamma_{0}\right)^{\prime} W m\left(\Psi \mid \Gamma_{0}\right)\right\}$

A permanent increase of productivity (MIT shock)

- At $t=0: \uparrow Z \Rightarrow \uparrow e^{*} \Rightarrow 1-G_{0}\left(\hat{a}\left(b^{*}\right)\right)<e^{*} \Rightarrow \downarrow \boldsymbol{b}$

A permanent increase of productivity (MIT shock)

- At $t=\Delta: \boldsymbol{G}$ shifts right $\Rightarrow \uparrow \boldsymbol{b}$
- $1-G_{\Delta}\left(\hat{a}\left(b_{0}\right)\right)>e^{*}$

A permanent increase of productivity (MIT shock)
Case 1

A permanent increase of productivity (MIT shock)
Case 2

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

- Two cases:

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

- Two cases:

1. $\uparrow \tau_{t}$ if $\Delta b_{t}>\Delta A_{t}$

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

- Two cases:

1. $\uparrow \tau_{t}$ if $\Delta b_{t}>\Delta A_{t}$
2. $\downarrow \tau_{t}$ if $\Delta b_{t}<\Delta A_{t}$

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

- Two cases:

1. $\uparrow \tau_{t}$ if $\Delta b_{t}>\Delta A_{t}$
2. $\downarrow \tau_{t}$ if $\Delta b_{t}<\Delta A_{t}$

- τ may oscillate over time $\Rightarrow b$ may hit the $P C$ before $\tau_{t} \rightarrow \tau^{*}$

The "Oscillatory" Behavior of τ

- Example: Suppose that $\uparrow b_{t}$ and $\uparrow A_{t}$. Recall:

$$
\tau_{t}=\frac{b_{t}}{A_{t}} \cdot\left(1-e^{*}\right) \cdot y\left(e=e^{*}\right)
$$

- Two cases:

1. $\uparrow \tau_{t}$ if $\Delta b_{t}>\Delta A_{t}$
2. $\downarrow \tau_{t}$ if $\Delta b_{t}<\Delta A_{t}$

- τ may oscillate over time $\Rightarrow b$ may hit the $P C$ before $\tau_{t} \rightarrow \tau^{*}$
- The dynamics of b can still be characterized!

Counterfactual Analysis

Question Role of Politics in the Evolution of the Welfare State?

Counterfactual Analysis for the US

1. Find the sequence of Political Weights $\left\{\phi_{t}\right\}_{1970}^{2019}$ that matches $\left\{b_{t}\right\}_{1970}^{2019}$
2. Simulate the model for "extreme" alternative paths around $\left\{\phi_{t}\right\}_{1970}^{2019}$
3. Question Does the trend of social benefits change?

USA:The Evolution of the Political Weight

USA:The Evolution of the Political Weight

- 1970-1990: Pro-business trend $(\uparrow \phi)$

USA:The Evolution of the Political Weight

- 1990-2000: Pro-worker trend $(\downarrow \phi)$

USA:The Evolution of the Political Weight

- 2000-present: moderate Pro-business trend ($\nearrow \phi$)

USA:The Evolution of the Political Weight

- Republicans: largest increases of ϕ

USA:The Evolution of the Political Weight

- Democrats: largest decreases of ϕ

USA:The Evolution of the Political Weight

- Behavior of ϕ consistent with partisan political perspectives

Question What would have been the evolution of b if?

1. Pro-worker scenario (Low ϕ): $\phi_{t} \times$ largest $\%$ drop

Question What would have been the evolution of b if?

1. Pro-worker scenario (Low ϕ): $\phi_{t} \times$ largest $\%$ drop
2. Pro-business scenario (High ϕ): $\phi_{t} \times$ largest $\%$ increase

Question What would have been the evolution of b if?

1. Pro-worker scenario (Low ϕ): $\phi_{t} \times$ largest \% drop
2. Pro-business scenario (High ϕ): $\phi_{t} \times$ largest $\%$ increase

Question What would have been the evolution of b if?

Main

- Trend of b would have remained positive since 1990
- Main message: Limited role of politics in the evolution of the welfare state

[^0]: Forward looking gov.
 PE: 2-D diagram

